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General Remarks and Notations:
W ′m denotes mth azimuthal longitudinal wake function as a function of distance z for

z<0. When z>0, W ′m(z)=0 and W ′m(0)= lim
z→0−

W ′m(z). Similar for transverse wake Wm.

The mth azimuthal longitudinal impedance Z
‖
m(ω) =

∫
e−iωz/vW

‖
m(z)dz/v is related

to the transverse impedance of the same azimuthal Z⊥m(ω) =
∫
e−iωz/vW⊥m(z)idz/(βv) by

Z
‖
m = (ω/c)Z⊥m (valid when m 6= 0). In many cases, β=v/c has been set to 1.

Unless otherwise stated, round beam pipe of radius b is assumed. C = 2πR is the ring
circumference and n is the revolution harmonic. Z0 ≈ 377 Ω is the free-space impedance.
ε0 and µ0 are the free-space dielectric constant and magnetic permeability.

Description Impedances Wakes

Space-charge: [1]
beam radius a in a
length L of perfectly
conducting beam
pipe of radius b.

Z
‖
0

n
= i

Z0L

2Cβγ2

[
1 + 2 ln

b

a

]
Z⊥m6=0 = i

Z0L

2πβ2γ2m

[
1
a2m
− 1
b2m

] W ′0 =
Z0cL

4πγ2

[
1 + 2 ln

b

a

]
δ′(z)

Wm6=0 =
Z0cL

2πγ2m

[
1
a2m
− 1
b2m

]
δ(z)

Resistive Wall: [1]
pipe length L, wall
thickness t, conduc-
tivity σc, skin depth
δskin.

Z
‖
m

L
=
ω

c

Z⊥m
L

=
Z0c/(πb2m)

[1+sgn(ω)i](1+δm0)bc
√
σcZ0c
2|ω| −

ib2ω
m+1 + imc2

ω

t�δskin=
√

2c/(|ω|Z0σc), |ω|�cχ/b, χ = 1/(Z0σcb)

For t� δskin and
b/χ� |z| ≈ c/|ω| �
bχ1/3.

Z‖m =
ω

c
Z⊥m

Z‖m =
1−sgn(ω)i

1 + δ0m

L

πσcδskinb2m+1

Wm=− c

πbm+1(1+δm0)

√
Z0

πσc

L

|z|1/2

W ′m=− c

2πbm+1(1+δm0)

√
Z0

πσc

L

|z|3/2
For t� δskin or very
low freq., and b/χ�
|z| ≈ c/|ω|�

√
bt.

Z
‖
0

L
= −iZ0tω

2πbc
,

Z⊥1
L

= −iZ0t

πb3

W ′0
L

=−Z0tc

2πb
δ′(z),

W1

L
=−Z0tc

πb3
δ(z)

Z
‖
0 =2Zc

[
φ0

2π

]2[
2 sin2ωL

c
−i sin

2ωL
c

]
Z⊥1 =

[
Z
‖
0

ω

]
pair

c

b2

[
4
φ0

]2

sin2 φ0

2

W ′0 =2Zc c
[
φ0

2π

]2
[δ(z)− δ(z+2L)]

W1=
8Zc c
π2b2

sin2φ0

2
[H(z)−H(z+2L)]

A pair of strip-line
BPM’s: [2] lengthL,
angle each subtend-
ing to pipe axis φ0,
forming transmis-
sion lines of charac-
teristic impedance
Zc with pipe.

The strip-lines are assumed to terminate with impedance Zc at
the upstream end.

Heifets inductive im-
pedance: [3] low freq.
pure inductance L.
Z
‖
0 rolls off as ω−1/2.

Z
‖
0 = − iωL

(1−iωa/c)3/2

−→ −iωL as ω → 0

W ′0 =
c2L

a
√
πaz

[
1 +

2z
a

]
ez/a

−→ c2Lδ′(z) as a→ 0

Pill-box cavity at
low frequencies with
length g and depth
h, where g � h [6].

Z
‖
0 = −i ωZ0

2πcb

[
gh− g2

2π

]

Z⊥1 = −i Z0

πb3

[
gh− g2

2π

] W ′0 = −Z0c

2πb

[
gh− g2

2π

]
δ′(z)

W1 = −Z0c

πb3

[
gh− g2

2π

]
δ(z)
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Description Impedances Wakes

Pill-box cavity at
low freq.: length
g, radial depth h,
where b ≤ g � h [6].

Z
‖
0 = −iωZ0h

2

π2cb

[
ln

2πg
h

+
1
2

]
Z⊥1 = −i2Z0h

2

π2b3

[
ln

2πg
h

+
1
2

] W ′0 =−Z0ch
2

π2b

[
ln

2πg
h

+
1
2

]
δ′(z)

W1 =−2Z0ch
2

π2b3

[
ln

2πg
h

+
1
2

]
δ(z)

Pill-box cavity:
length g, radial
depth d. At
freq. ω � c/b,
diffraction model
applies [1].

Z‖m=
[1 + sgn(ω)i]Z0

(1+δm0)π3/2b2m+1

√
cg

|ω|

Z‖m =
ω

c
Z⊥m

Wm = − 2Z0c
√

2g
(1+δm0)π2b2m+1

|z|1/2

W ′m =
Z0c
√

2g
(1+δm0)π2b2m+1

|z|−1/2

Optical model: [7]
A series of cavities
of periodic length
L. Each cavity
has width g, high
Q resonances of
freq. ωn/(2π) and
loss factor k

(m)
n for

azimuthal mode m.

ReZ‖m =
N∑
n=1

πk(m)
n δ(ω − ωn) +

2πCSVG(ν̄)F (ν)
(1+δm0)b2m

H(ω− ωN )

W ′m =
N∑
n=1

2k(m)
n cos

ωnz

c
+

2CSVG(ν̄)
(1+δm0)b2m

∫ ∞
ωN

dωF (ν) cos
ωz

c

where CSV = 2Z0j
2
m1/(π

2ζ2β) ≈ 650 Ω for m = 0 and 1650 Ω for
m = 1, jm1 is first zero of Bessel function Jm, ζ = 0.8237.

G(ν̄)= ν̄2K2
1(ν̄), F (ν)=

√
ν+1

(ν+2
√
ν+2)2

, ν̄=
ωb

βγc
, ν=

ω

ω
SV

=
4b2ω

ζ2c
√
gL

Formulas for com-
putation of W ′m.
erfc(x) is the
complementary
error function.

∫ ∞
ω̂
dωF (ν) cos

ωz

c
= ω

SV
F̃0(z/c)−

∫ ω̂

0
dωF (ν) cos

ωz

c

F̃0(x) =
∫ ∞

0
dωF (ν) cosωx =

π

4
(1 + 4x)e2xerfc(

√
2x)−

√
πx

2

Resonator model for
the mth azimuthal,
with shunt imp.
R

(m)
s , resonant freq.

ωr/(2π), quality
factor Q [1].

Z‖m =
R

(m)
s

1 + iQ (ωr/ω − ω/ωr)

Z⊥m =
c

ω

R
(m)
s

1 + iQ (ωr/ω − ω/ωr)

Wm =
R

(m)
s c ωr
Qω̄r

eαz/c sin
ω̄rz

c

where α = ωr/(2Q)
ω̄r =

√
|ω2
r − α2|

Res. freq.
ωmnp/(2π) and
shunt impedance
(Rs)mnp of a pill-box
cavity for nth radial
and pth longitudi-
nal modes. Radial
depth h and length
g. xmn is nth zero of
Bessel function Jm
[8].

ω2
mnp

c2
=
x2
mn

d2
+
p2π2

g2

[
Rs
Q

]
0np

=
Z0

x2
0nJ

′2
0 (x0n)

8c
πgω0np


sin2 gω0np

2βc × (1 + δ0p) p even

cos2 gω0np

2βc p odd

[
Rs
Q

]
1np

=
Z0

J ′1
2(x1n)

2c2

πgd2ω2
1np


sin2 gω1np

2βc × (1 + δ0p) p even

cos2 gω1np

2βc p odd

3



Description Impedances Wakes

Z
‖
0

n
= −i Z0g

2πR
lnS

Z⊥1 = −iZ0g

πb2

S2 − 1
S2 + 1

W ′0 = −Z0cg

2π
lnS δ′(z)

W1 = −Z0cg

πb2

S2 − 1
S2 + 1

δ(z)

Low-freq. response
of a pill-box cavity:
[4] length g, radial
depth d. When
g � 2(d− b), replace
g by 2(d − b). Here,
S = d/b.

Effect will be one half for a step in the beam pipe from radius b
to radius d, or vice versa, with g replaced by 2(d− b).

Iris of half ellipti-
cal cross section at
low freq.: width
2a, maximum pro-
truding length h [5].

Z
‖
0 = −iωZ0h

2

4cb

Z⊥1 = −iZ0h
2

2b3

W ′0 = −Z0ch
2

4b
δ′(z)

W1 = −Z0ch
2

2b3
δ(z)

Pipe transition at
low freq.: tapering
angle θ, transition
height h. γ is Euler’s
constant and ψ is
the psi-function [6].

Z
‖
0=
ωb2Z⊥1

2c
=−iωZ0h

2

2π2cb

{
ln
[
bθ

h
−2θ cot θ

]
+

3
2
−γ−ψ

(
θ

π

)
−π

2
cot θ− π

2θ

}

W ′0 = −
∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣ c2δ′(z) , W1 = −
∣∣∣Z⊥1 ∣∣∣ cδ(z) , h cot θ� b

Pipe transition at
low frequencies with
transition height
h� b [6].

Z
‖
0 =

ωb2

2c
Z⊥1 = −iωZ0h

2

2π2cb

(
ln

2πb
h

+
1
2

)
W ′0 = −

∣∣∣∣∣Z
‖
0

ω

∣∣∣∣∣ c2δ′(z) , W1 = −
∣∣∣Z⊥1 ∣∣∣ cδ(z)

Z
‖
0 =

ω2µ2
0L

2x2
0

4a2Zk

Z⊥1 =
cωµ2

0L
2

4a2Zk

W ′0 = −c
3µ2

0L
2x2

0

4a2Zk
δ′′0(z)

W1 = −c
3µ2

0L
2

4a2Zk
δ′(z)

Kicker with window-
frame magnet [9]:
width a, height b,
lengthL, beam offset
x0 horizontally, and
all image current
carried by conduct-
ing current plates.

Zk = −iωL+Zg with L ≈ µ0bL/a the inductance of the windings
and Zg the impedance of the generator and the cable. If the kicker
is of C-type magnet, x0 in Z‖0 should be replaced by (x0 + b).

Traveling-wave kicker
with characteristic
impedance Zc for
the cable, and a
window magnet of
width a, height b,
and length L [9].

Z
‖
0 =

Zc
4

[
2 sin2 θ

2
−i(θ− sin θ)

]
, Z⊥1 =

ZcL

4ab

[
1−cosθ

θ
−i
(
1− sinθ

θ

)]
W ′0 =

Zcc

4

[
δ(z)−δ

(
z−Lc

v

)
−Lc
v
δ′(z)

]
W1 =

Zcv

4ab

[
H(z)−H

(
z−Lc

v

)
−Lc
v
δ(z)

]
θ = ωL/v denotes the electrical length of the kicker windings and
v = Zcac/(Z0b) is the matched transmission-line phase velocity of
the capacitance-loaded windings.

Electric and magnetic dipole
moments when wavelength� a:

~d=−2ε0
3
a3 ~E , ~m=− 4

3µ0
a3 ~BBethe’s electric and

magnetic moments of
a hole of radius a in
beam pipe wall [10].

~E and ~B are electric and magnetic flux density at hole when hole
is absent. This is a diffraction solution for a thin-wall pipe.
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Description Impedances Wakes

Z
‖
0 = −iωZ0

c

αe + αm
4π2b2

Z⊥1 = −iZ0(αe + αm)
π2b4

cos ∆ϕ

W ′0 = −Z0c
αe + αm

4π2b2
δ′(z)

W1 = −Z0c
αe + αm
π2b4

cos ∆ϕ δ(z)

Small obstacle [5, 11]
on beam pipe, size
� pipe radius, freq.
below cutoff. αe
and αm are elec-
tric polarizability
and magnetic sus-
ceptibility of the
obstacle.

∆ϕ is the azimuthal angle between the obstacle and the direction
concerning Z⊥1 and W1.

Polarizabilities for various geometry: beam pipe radius is b and wall thickness is t.

Elliptical hole: ma-
jor and minor radii
are a and d. K(m)
and E(m) are com-
plete elliptical func-
tions of the first and
second kind, with
m = 1−m1 and m1 =
(d/a)2. For long el-
lipse ⊥ beam, major
axis a � b, beam
pipe radius, because
the curvature of the
beam pipe has been
neglected here [12].

αe+αm=


πa3m2

1[K(m)−E(m))]
3E(m)[E(m)−m1K(m)]
πa3[E(m)−m1K(m)]

3[K(m)−E(m)]

m→1
=⇒
long

ellipse


πd4[ln(4a/d)−1]

3a
‖ beam
d� b

πa3

3 [ln(4a/d)−1]
⊥ beam
a� b

αe+αm
circular
=⇒
m→0

2a3

3
circular hole a = d� b

Above are for t� a, ×0.56 (circular) or ×0.59 (long ellipse) when
t ≥ a.
For higher frequency correction, add to αe + αm the extra term,

+
2πa3

3

[
11ω2a2

30c2

]
circular,


−πad

2

3

[
ω2a2

5c2

]
‖ beam

long ellipse

+
2πa3

3

[
2ω2a2

5c2[ln(4a/d)− 1]

]
⊥ beam

long ellipse

Rectangular slot:
length L, width w.

αe + αm = w3(0.1814− 0.0344w/L) t� a, ×0.59 when t ≥ a

Rounded-end slot:
length L, width w.

αe + αm = w3(0.1334− 0.0500w/L) t� a, ×0.59 when t ≥ a

Annular-ring-shaped
cut: inner and outer
radii a and d = a+w
with w� d.

αe + αm =
π2d2a

2 ln(32d/w)− 4
− π2w2(a+ d)

16
t� d

αe + αm = πd2w − 1
2w

2(a+ d) t ≥ d

Half ellipsoidal pro-
trusion with semi
axes h radially, a
longitudinally, and d
azimuthally. 2F1

is the hypergeomet-
ric function.

αe + αm = 2πahd
[

1
Ib

+
1

Ic − 3

]
Ib =2F1

(
1, 1; 5

2 ; 1− h2

a2

)
, Ic =2F1

(
1, 1

2 ; 5
2 ; 1− a2

h2

)
, if a = d

αe + αm = πa3 if a = d = h ,
2πh3

3[ln(2h/a)− 1]
if a = d� h

αe + αm =
8h3

3

[
1 +

(
4
π
− π

4

)
a

h

]
if a� h = d

αe + αm =
8πh4

3a

[
ln

2a
h
− 1

]
if a� h = d
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Wall roughness [13]
1-D axisymmetric
bump, h(z) or 2-D
bump h(z, θ). Valid
for low frequency
k = ω/c � (bump
length or width)−1,
h � b, pipe radius,
and |∇h| � 1.

1-D: Z
‖
0 = −2ikZ0

b

∫ ∞
0

κ|h̃(κ)|2dκ

with spectrum h̃(k) =
1

2π

∫ ∞
−∞

h(z)e−ikzdz

2-D: Z
‖
0 = −4ikZ0

b

∞∑
m=−∞

∫ ∞
−∞

κ2√
κ2 +m2/b2

|h̃m(κ)|2dκ

with spectrum h̃m(k) =
1

(2π)2

∫ 2π

0
dθ

∫ ∞
−∞

dz h(z, θ)e−ikz−imθ

Heifets and Keifets formulas for tapered steps and tapered cavity at high frequencies [14].

Taper in from radius
h to b (<h), out from
radius b to h; taper-
ing angle α. Taper-
ing inefficient for a
bunch of rms length
σ, if 2(h−b) tanα�
σ. All formulas here
and below are valid
for positive k = ω/c
only.

ReZ‖0 =±Z0

2π
ln
h

b
+
(
Z
‖
0

)
step

, ReZ⊥1 =±Z0b

4π

(
1
b2
− 1
h2

)
+
(
Z⊥1
)
step

{
+ in

− out(
Z
‖
0

)
step

=
Z0

2π
ln
h

b
, tanα>

h−b
kb2

,
(
Z
‖
0

)
step

=
Z0

4
kb tanα, tanα� 1

kb(
Z⊥1
)
step

=
Z0

4πb

[
1− 1

(1+kb)2 2F1

(
1, 3

2 , 3,
4bh

(b+h)2

)]
, tanα>

h−b
kb2

, kb�1

(
Z⊥1
)
step

=
Z0b

4π

(
1
b2
− 1
h2

)
, tanα>

h−b
kb2

, kb�1, h�b(
Z⊥1
)
step

=
Z0

16b
(kb)3 tanα, tanα� 1

kb

Pill-box cavity: total
length g, radial depth
h without taper. Z

‖
0 =


(1 + i)Z0

2πb

√
g

kπ
g � kb2

Z0

π
ln
h

b
g � kb2

Tapering angle α on
both sides, g � h. ReZ‖0 = 2

(
Z
‖
0

)
step

, ReZ⊥0 = 2
(
Z⊥0
)
step

as given above
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